Economic and sustainable disposal of waste water, sludge and organic waste materials as well as recovery of water and reuse for several purposes including drinking, in extreme locations

Principle of the conventional methods

Delimitation of the Membranes

Abgrenzung Membranen

Removal of substances contained in water through membrane filtration of different separation sizes

width 0.8 m

*) high biomass concentration and high age of sludge provide for highest possible purification power

membranes retain pathogens, bacteria resistant to antibiotics and germs occuring sludge at an amount of approx 4 kg of each inhabitant is mineralized inodorous method and no disposal of excrement sludge full operation guaranteed for 50 years

capital and operating costs in the long run are very low

Principle of the membrane microfiltration biology

Reuseable steril water from waste water

Microbiological parameters

- Enclosure 1 (to § 5 sections 2 and 3)
- Part I: General demands on water for human use
 - Parameter Limit (number/100 ml)

 \mathbf{O}

- Escherichia coli (E. coli)
- Enterococcus 0
- Coliform bacteria

Environment Office

Almost any biological excess sludge

Result of a 2-years test:

Almost complete removal of bacteria and viruses Almost complete removal of organic substances (COD about 15 mg/l) High purification stability also in the case of high fluctuations of pollution Biologial self-regulation and self-optimization Possible use of the purified water as process water, for watering and for ground water enrichment (for drinking water production) Steril water from decentralized waste water sewage systems as a preliminary stage for the

- enrichment of ground water for the drinking water production
- toilet flushing
- garden and park watering
- direct production of drinking water

From waste water to drinking water

- at least two barriers
- low energy cost
- low maintenance cost
- low producing cost
- easy to operate
- suitable for incorporation in existing systems
- sustainable problem solution

Disposal of waste water, sludge and organic waste materials as well as recovery of industrial water and drinking water in extreme locations

Microbiological parameter

• Part II:

Demands on water for human use intended for being bottled or filled in other containers for the purpose of sale

Parameter

- Escherichia coli (E. coli)
- Enterococcus
- Coliform bacteria
- Pseudomonas aeruginosa
- Colony number at 22°C
- Colony number at 36°C

Limit 0/250 ml 0/250 ml 0/250 ml 0/250 ml 100/ml 20/ml

Microscopical pictures of

00 nm

low pressure membranes

Product tube

Brine seal

Reverse osmosis unit

Toiletten / Duschen

toilets/showers

Abwasserrecyclinganlage

waste water recycling system

Solar energy with storage

Thank you for your attention

Reliable technology for the production of drinking water from waste water